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Poland 
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Abstract. An altemative to the Bogomolny separation for the three-dimensional Heisenberg 
model is studied. An example of an alternative approach to one- and two-dimensional spin field 
models is given. Energetic stability of ferromagnet configurations with non-trivial Hopf index 
within isotropic Heisenberg model is considered. 

1. Introduction 

The possibility of the existence of topologically stable configurations of the Heisenberg 
ferromagnet has been discussed over past two decades [1-5]. 

In the Heisenberg model of a ferromagnet we heat magnetization as a continuous unit 
vector field in a three-dimensional space R3, Im(x,  y. z)l = 1. The Heisenberg Hamiltonian~ 
of field m in an isotropic ferromagnet is defined as 

In order to discuss the topological properties of field m, we need to redefine it on 
sphere S3 in the four-dimensional space R4. This is done by composing a stereographic 
projection from S3 to R3 with the origin4 map .m resulting in a unit vector field defined 
on S3. As there is one-to-one correspondence between all unit vectors in I? and points 
on two-dimensional sphere S2, the configuration of the whole ferromagnet can be identified 
with map S defined as follows 

s : s3 H s2. (2) 

One of the fundamental properties of map (2) is its Hopfindex defined as an integral 
(see (29)) taking on integer values only. The index is insensitive to continuous changes of 
map S and thus it is called a topological invariant and can be used to classify all mappings 
(2) L6.71. 

Consequently, no continuous transition from one Hopf class to another one is possible 
and it is this property which protects a configuration from ‘Rattening’ itself (i.e. evolving 
to configuration with constant magnetization vector). 

This paper is devoted to a study of the existence of configurations with minimum energy 
within a given Hopf class. The plan of the presentation is as follows. In the next section 
two examples of the conditional minimization of the energy functional used in section 4 are 
studied. The Hopf index is defined in section 3 and the main result proving the non-existence 
of a minimum energy configuration for a given Hopf class is established. 
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2. Alternatives to the Bogomolny separation for the classical spin field 

In the case of a topologically stable configuration we deal with a problem of the minimization 
of a functional (Hamiltonian) within the space of constant topological charge. If we 
take the typical approach which i s  to search for the functional's minimum, we will find 
that the topological part of the functional does not contribute to the resulting equations. 
This is caused by the vanishing of the functional derivative of the topological part of the 
Hamiltonian. 

In order to solve the problem we choose, as our new variables, functions whose 
variations may lead to global changes in the field configuration. Such a selection, in 
general, leads to more equations than is necessary. The number of these equations may 
then be reduced by means of selecting the appropriate value for the spectral parameter 
(Lagrange's multiplier). The choice of the new variables is neither unique nor simple. In 
general, selection should be based on,,derivatives of the field variables in such a way that 
the variational derivative of the topological charge with respect to the new set of variables 
does not vanish and it should be possible to write the Hamiltonian in terms of the new 
variables. 

As a simple example we will discuss the case of a two-dimensional spin field on one- 
dimensional compact space (circular chain of spins). The topological charge of the field 
configuration is represented by number of turns of spin vector along the chain. A classical 
Hamiltonian for such a field reads as foliows 

P T Jochym and K Sokalski 

and may serve as a very good example for displaying the principles of the proposed method. 
We wish to find the minimum of Hamiltonian (3) under the condition of constant value 

of integral: 

~m a tan-' (SYISX) dl 
-m ai (4) 

representing the total number of turns vector S has done. 

functional as 
Employing the standard Lagrange multiplier method we introduce the Lagrange 

Introducing the stereographical coordinate U :  

we express the Hamiltonian in terms of coordinate U in the following form: 

Denoting ci = Zu',f(l + U*) we end up with the simple formula: 
m m 

.I=[ o r Z d l - h [  cidl. 
J -CO J-m 
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Taking variation of 'H with respect to variable a we obtain the differential equation: 

with the corresponding solution as follows 

U = tan($ + c). 

s = {sin($ + c), COS(+A~ + c)]. 

(10) 

This leads to the following formula for S 

(11) 

The less trivial problem of a two-dimensional o-model has been solved in [8,9]. The 
generalized (with topological charge) u-model Hamiltonian reads as follows 

'H = H ( S )  - hI (S )  

I(S) = ' @yc,bSuS$SY,d2x. J 
In stereogaphic variables: 

w = U + iv = cot(ep)ei*. 

The Hamiltonian density takes the form 

VwVw' - Ai(w,lw:2 -~w,zwl;) 
h =  

(1 + w w y  
Selecting new variables as follows 

we end up with the Hamiltonian density in the following form: 

h = 1 ~ 1 '  -+(v3vZ - u'u4) .  

The minimization condition S'H,/HIGw = 0 leads us to the set of linear equations: 

Dv = AV 

with the corresponding characteristic equation: 

det(D - AE) = 0 

r i  o o 1 1  

This leads (taking into account the definitions of U (17) and w (15)) to Riemann-Cauchy 
conditions and thus to solutions in the form of analytic functions of z = x + iy for an 
eigenvalue of equation (19) A! = 0. The second eigenvalue A2 = 2 corresponds to analytic 
functions of z = x - iy. Thus eigenvalues A I ,  h~ correspond respectively to instanton and 
anti-instanton solutions. 
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3. Hopf index- topological invariant for field m : R3 H Sz 

P T Jochym and K Sokalski 

Let us consider the three-dimensional vector field m : R3 H S2; Iml = 1.. After 
compactification of R3 we end up with field S : S3 H Sz for which we can define a 
Hopf index 171. 

First we have to introduce: 
(i) the form u2 on S2 such that 

U2 : s2 H 723 

and 

U2 = 1 L 
(ii) the form w:  

(iii) with corresponding form a! such that 

w = da. 

By writing (24) explicitly, we obtain 

w = ~ € " ~ y € % m p q S  a S,,S!, B Y&P&4 

and we can calculate a, using the local reverse of the Poincari lemma [7], as 

where 

A" = ~ E ~ ~ ~ ~ ~ ' " S ~ S { S , ) ; .  

Consequently, the Hopf index in terms of a and w is 

This formal definition can be rewritten in a more practical form using vector potential A, 
and current J, 161: 

(30) 

J' = P A a a , A A  (31) 

1 
87r 

J, = --E%,b,saa,sbaAsC 

leading to 
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The relationship between .I+, A ,  and coefficients of the forms 01, UJ and between J,  and 
A, read as follows 

w = ~ ~ , , ~ J ” d x ” d x ~  (33) 

CY =A,&’ (34) 

(35) 
I 

Ah = E A , ~ X ”  1 J’l(tz)tdt. 

To simplify the resulting formula for q we project sphere Sz by stereographical 
projection to two-dimensional Euclidean space Rz with coordinates (U, U): 

leading us to an expression for J’: 

Denoting 

we obtain an expression for Hopf index q: 

11 

1 
q = ---E E ’ ” ~ E ” ’ ~  d3x x “ o ~ , ( z ) ~ A ( z )  O1,(tz)&(tz)tdt. (40) 

r z  ,pa s, 
So for a given spin field m we  can^ calculate the corresponding Hopf index q .  

An example of a non-trivial configuration is provided by the function’ w = u/u  where 
u ~ =  01 + i,9 and U ~= y + i8 [6]. Coordinates 01, ,9, y ,  8 are defined on the S3 sphere. 
This surface is an image of a .threedimensional Euclidean space ( x ,  y ,  z )  in stereographic 
projection: 

2r 2Y 
1 + x 2 + y * + - z 2  B =  l + x 2 + y Z + z Z  

f f =  

Coordinates of vector S are represented by complex number w using formula (36) with 
U = Re(w) and U = Im(w). The Hopf index for this configuration can be easily calculated. 
The formulae for the current and vector potentials are 

r ( l  + x z  + y2 + z2)3 

r(l  +X?+Y2-! -Z*)3  

J ( x ,  Y. Z )  = 

-4(-1 + x 2  + yz  - 2’) 

A ,  = iz+a,z/zn 

Z = (;++iyB) 
(43) 

(44) 
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and the dot product in (32) reads as 
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-4 
ApJp = 

i r2 (1+  x2 + y 2 +  z2)3. 

This leads us to the following formula in spherical coordinates for the Hopf index: 

(45) 

4. Equation for topologically stable configurations of field S 

The Hamiltonian (1) can now be rewritten in terms of ap and ,9": 

H = L8 d3x (upup + @,,9". (47) 

In order to obtain an equation for minimal energy with constant Hopf index, we calculate 
the variational derivative of 31: 

' H = H + A q  (48) 

with respect to functions up and flu, using formula (40) for the topological part of 111. This 
leads to the following set of equations: 

with an analogous equation for the derivative with respect to &(y): 

These formulae are equivalent to the following simplified ones (these equations play a 
similar role to that of equation (19) in the g-model example): 

(51) 
h A 

2rr 2rr 
a = --(I x 2) x p p = -(I x 2) x a 

where 

I = lm[a( tz )  x p(tz)]tsgn(l - t) dr. (52) 

Let us now analyse the overdetemined system of six equations (51) for functions U ,  U. 
We will now show, using the reductio ad absurdum method, that this system has no solutions. 
We shall try to reduce the number of equations by selecting a special value for the spectral 
parameter A. Inserting the second equation into the first, after simple vector calculations, 
we obtain 
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As we can see from the first line in (51) a must be perpendicular to I x z and the right- 
hand side of equation (53) is zero. Consequently equation (53) can be satisfied only if the 
coefficient on the left-hand side vanishes: 

- ( I  x z )  = 1 (k 7 (54) 

or function a is equal to zero: 

a = 0. (55) 

Solution ~(55) leads to the trivial case of the constant field with Hopf index zero. 
Equation (54) is equivalent to the characteristic equation (20) from the two-dimensional 
example, except that it is a nonlinear equation for parameter h and two functions a, 0 from 
(52). We cm’use this equation without actually solving it. Equation (54) means that vector 
(h,/Zx)(l x z)  = e is a unit vector, so we can use this information~to eliminate the second 
equation from (51). Now we have~set of four equations (three from (51) and &e fourth one 
is (54)) for two functions U ,  U (38). 

~. 

The left-hand side of equation (54) must be constant. We now introduce the notation: 

(56) 

(57) 

f(z) = z x (ff(z) x P W )  

g ( z ) ~ =  [ l’ f(tz) dt - lw f(m) df]. 

A necessary condition for (54) to be satisfied is g(sz)’ = g(z)’. Consequently 

The last equation leads to the condition: 

[g(z) +PX(S)l * P A S )  (s’ - 1) (61) 

where 

P&) = [ f ( f z ) ~ d f .  (62) 

In order to satisfy equation (61) function p&) has to behave asymptotically as s reaches 
the infinity limit. Consequently the second integral in (57) becomes infinite as it is equal to 
px(oo) .  The argumentation above leads to the conclusion that there are only two classes of 
functions which can satisfy equation (54). One i s  the constant null vector for a and P and 
the other is a singular configuration concentrated at the origin of the coordinate system. By 
rewriting formula for g(sz) for such a singular configuration we obtain fors  > 0 
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As the term with integrals o f f  from 1 to s vanishes, this leads to the scaling law for g(z): 

and an obvious solution for g(z):  

g(z) = VO/~Z/ iconstant (65) 

which contradicts (54) and thus cannot be a solution of the system of equations (51). This 
leads us to the final conclusion that there are no solutions of the system of equations (51) 
with non-trivial Hopf index. 

~~ 

5. Conclusions 

We have proved that there are no configurations with minimal energy in a given, non- 
trivial Hopf class for a Heisenberg Hamiltonian with Hopf index as a topological term. 
Only time independent configurations were considered (There still may be time-dependent 
configurations with non-trivial Hopf index.) This result may be interpreted in the following 
way. An energy functional may have a minimum for an ‘infinitesimally flat’ configuration, 
i.e. the one with infinitesimal difference from the constant vector but still possessing a non- 
zero Hopf index. We have also shown that the use of derivative coordinates (like the one 
in (17)) could be effective in the search for conditional extremes of the Hamiltonian with 
a topological term. This method could be used as an alternative to Bogomolny separation 
as it is usually easier to find an appropriate set of variables than perform the separation. 
The method can also be applied to other cases. Obvious applications include the nonlinear 
u-models. For instance in [lo] authors use the O(3) o-model as a basis for extended action 
which is shown to be equivalent to the spin-s theory. Since a Euclidean metric is used, the 
base action appear to be identical to (48). Our result shows that this base action has no 
stationaq points. 

Some connection with the Skyrme model could also be considered, particularly with 
a known Hopf soliton [ll]. In fact these two theories appear to have little in common. 
Skyrme theory is S3 H S3, not S3 Sz. Furthermore, the Hopf soliton is an S3 H S3 
map derived from an S3 H Sz one, and thus it can evolve into a configuration without a 
component with a non-zero Hopf index. 

, .  
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